irfpy.util.sputtering

A formulation of sputtering

Code author: Yoshifumi Futaana

ThompsonSigmund(n0, y, ene_bind, ene_in, m1, m2)

Thompson-Sigmund energy spectrum.

class irfpy.util.sputtering.ThompsonSigmund(n0, y, ene_bind, ene_in, m1, m2)[source]

Bases: object

Thompson-Sigmund energy spectrum.

>>> ts0 = ThompsonSigmund(1, 0.5, 1.5, 1000., 1, 25)
>>> print('%.3f' % ts0.ei)
147.929

Todo

Clarify the unit system. Energy looks eV. What about the energy spectrum?

Initialize the formulation.

\[F(E) = nC\frac{E}{(E+E_b)^3}\Bigl(1-\sqrt{\frac{E+E_b}{Ei'}}\Bigr)\]

Note that C is a parameter including the yield. The unit of C is the energy. After several argebla, C is obtained from yield, Y, like

\[C = \frac{Y}{\frac{1}{2E_b}-\frac{4}{3\sqrt{EbEi'}}}\]
Parameters:
  • n0 – Density.

  • y – Yeild.

  • ene_bind – Binding energy, \(E_b\)

  • ene_in – Impinging beam energy, \(E_i\)

  • m1 – Mass of impinging beam. Unitless.

  • m2 – Mass of target. Unitless.

f(e)[source]

Return the energy distribution at certain e.

irfpy.util.sputtering.doctests()[source]