swim_mominteg

This is a script to calculate the moment by integration in the LSE coordinate system.

#!/usr/bin/env python
''' This is a script to calculate the moment by integration in the LSE coordinate system.


'''
import matplotlib
from math import atan2,acos,sin

from pylab import *
import os,sys
import datetime

import logging
logging.basicConfig(level=logging.INFO)
logger=logging.getLogger(__file__)
logger.setLevel(logging.DEBUG)

import dateutil

import numpy

import irfpy.swim.swim_start
from irfpy.swim.swim_start import filter
from irfpy.util.vector3d import Vector3d
from irfpy.cy1orb.pvat import getlsevec

na = 21   # Division in azimuth angle
nb = 11   # Division in elevation angle


def ___pstring(str, fp=sys.stderr):
    ''' A helper function to print.
    '''
    if fp!=None:
        print(str, file=fp)

def _swim_observation_table(t0, fp=None):
    ''' Returns and print a table of the SWIM observation table.

    The input is time.  The output is a 2-D double array [N,11].
    One line consists of one measurement, and the column corresponds to:
        0: time (julday)
        1: energy step [0-15]
        2: direction step [0-15]
        3: count rate [0-]
        4: energy in eV
        5: velocity in km/s
        6-8: velocity in LSE frame (x,y,z) in km/s
        9: J(E)
        10: f(v)
    '''
    ## get the count data
    dat=irfpy.swim.swim_start.getdata(t0, filter=[filter.remove_isolated_one_count, filter.remove_background_5numsum])
    fv_=irfpy.swim.swim_start.getvdf(t0, filter=[filter.remove_isolated_one_count, filter.remove_background_5numsum]).getData()
    je_=irfpy.swim.swim_start.getdeflux(t0, filter=[filter.remove_isolated_one_count, filter.remove_background_5numsum]).getData()

    jd = dat.getJd()
    dat = dat.getData()
    print(jd, file=sys.stderr)
    print(dat, file=sys.stderr)

    ### For nominal energy and velocity table
    etbl=irfpy.swim.SwimEnergy.EnergyTable.table().getTable()
    vtbl=irfpy.swim.SwimEnergy.eV2kms(etbl)
    print(etbl, file=sys.stderr)
    print(vtbl, file=sys.stderr)

    ### For FOV of SWIM
    import irfpy.swim.SwimFov
    swimfov = irfpy.swim.SwimFov.SwimFov.getInstance(coords='SC')

    ### SWIM duty time
    import irfpy.swim.SwimTime
    dt=irfpy.swim.SwimTime.duty_time()
    print('DT=', dt, file=sys.stderr)

    ### SWIM G-factor
    import irfpy.swim.SwimGfact
    gfact=irfpy.swim.SwimGfact.gfactor()
    gf=gfact.getAbsGProtonStart()[0]   ### 0 is for 0.5 keV proton
    print('GF@0.5keV=', gf, file=sys.stderr)
    

    for ie in range(16):
        for id in range(16):

                ### Here one can get the vector of the flux in SC.
                vsc=swimfov.getDirection(id)
                vsc.scale(vtbl[ie])
                print(id, vsc, file=sys.stderr)

                ### The SC vector should be converted to LSE.
                vlse = getlsevec(jd, vsc)
                print(vlse, file=sys.stderr)

                ### The J(E) and f(V) is calculated
                je = je_[ie][id]
                fv = fv_[ie][id]

                __pstring('%.5f %2d %2d %6d %4d %7.2f %7.2f %7.2f %7.2f %10.3e %10.3e'%(jd.juld(), ie, id, dat[ie,id], etbl[ie], vtbl[ie], vlse.x, vlse.y, vlse.z, je, fv), fp=sys.stdout)
        

__solids={}

def swim_solid_fov(id):
    ''' A first attempt of SWIM solid FoV.

    Returns the FoV vectors (unit vectors) of the SWIM in the SC frame correpsonding to id.
    SWIM FoV is decided by a shifted normal distribution, but here
    we assumed a box with sigma in the cal rep.
    '''

    global __solids

    if id in __solids:
        return __solids[id]

    cent_A=array([-63.1, -54.78, -46.04, -35.46, -27.27, -17.08, -9.74, -1.32, 7.09, 14.43, 24.62, 32.81, 43.40, 52.13, 62.84, 65.41])
    sigma_A=array([7.49, 6.66, 5.74, 4.66, 3.92, 3.20, 2.87, 2.70, 2.77, 3.02, 3.62, 4.28, 5.27, 6.12, 7.09, 7.30])
#    #The sigma, s, is exp(-t^2/2s^2).  If it is converted to HWHM, multiply 2ln(2)
#    hwhm_A = sigma_A* 2*log(2)

    cent_B = 0.00
    sigma_B = 3.25
#    hwhm_B = sigma_B * 2 * log(2)

    arr_A = arange(na)
#    arr_A = (2 * arr_A / (na-1.) -1 )* hwhm_A[id]
    arr_A = (2 * arr_A / (na-1.) -1 )* sigma_A[id]
    arr_A = arr_A + cent_A[id]
    arr_A = arr_A * pi / 180.
    
    arr_B = arange(nb)
#    arr_B = (2 * arr_B / (nb-1.) -1 )* hwhm_B
    arr_B = (2 * arr_B / (nb-1.) -1 )* sigma_B
    arr_B = arr_B + cent_B
    arr_B = arr_B * pi / 180.

    ### Looking direction in the SC frame is
    # xsc = -cos(B) * sin(A)
    # ysc =  sin(B)
    # zsc =  cos(B) * cos(A)

    fovs=[]
    for ia in range(na):
        for ib in range(nb):
            v=Vector3d(  -cos(arr_B[ib])*sin(arr_A[ia]), sin(arr_B[ib]), cos(arr_B[ib])*cos(arr_A[ia]))
            fovs.append(v)
        

    __solids[id] = fovs
    return fovs

def swim_mominteg(t0, t1):
    ''' Integrate the ion flux over time
    '''

    # First, prepare the matrixes of the integration for each energy bin
    # Assumption is that the s/c ram velocity is ignored.

    ### Matrix of the reconvolved distribution function: now fixed to be '360x180' x 16
    reconfv = []
    for ie in range(16):
        aarr=[]
        for ia in range(360):
            barr=[]
            for ib in range(180):
                barr.append([])
            aarr.append(barr)
        reconfv.append(aarr)

    ### Obtain the observation time
    import irfpy.swim.swim_start
    obstime=irfpy.swim.swim_start.getobstime(timerange=[t0,t1])

    ### Rotate the time
    for t in obstime:
        logger.info('T=%s (started at %s)' % (t, datetime.datetime.now()))
        ### Get the corresponding data (f(v) in MKSA)
        fv_=irfpy.swim.swim_start.getvdf(t, filter=[filter.remove_isolated_one_count, filter.remove_background_5numsum]).getData()
        
        ### Rotate the deflection step
        for id in range(16):
            logger.debug('D=%d/16 started at %s' % (id, datetime.datetime.now()))

            ### Velocity vector of othe observed particles in the SC frame
            fov = swim_solid_fov(id)

            ### Rotate the energy step
            for ie in range(16):
            ### Now we can specify the direction of the coming ion and the energy step
                fv = fv_[ie][id]

                for vsc in fov:
                    # Convert SC to LSE
                    v=getlsevec(t, vsc)
                    v.normalize()

                    # theta is measured from z axis
                    theta = acos(v.z) * 180./pi
                    # phi is measured from x axis.  z-+x plane is 0, z-+y plane is 90
                    phi = (  atan2(v.y,v.x) * 180./pi + 360 ) % 360

                    ia = int(phi)
                    ib = int(theta)
                    reconfv[ie][ia][ib].append(fv)
#                    print ie, ia, ib, reconfv[ie][ia][ib]

    # Then, integrate over.

    # velocity step and its separation
    etbl=irfpy.swim.SwimEnergy.EnergyTable.table().getTable()
    vtbl=irfpy.swim.SwimEnergy.eV2kms(etbl)  * 1000.   ### Order in MKSA
    dvtbl=zeros(16)
    dvtbl[0]=(vtbl[1]-vtbl[0])/2
    for i in range(1,15):
      dvtbl[i]=(vtbl[i+1]-vtbl[i-1])/2
    dvtbl[15]=(vtbl[15]-vtbl[14])/2

    ## Initialize the density for three methods.
    density_by_max=0.
    density_by_ave=0.
    density_by_med=0.

    fv_avelist = zeros([16, 360, 180]) - 1e30

    for ia in range(360):
        for ib in range(180):
            for ie in range(16):
                if len(reconfv[ie][ia][ib]) != 0:
                    # Averaging f(v)
                    fvarr = array(reconfv[ie][ia][ib])
                    fv_ave = fvarr.sum()/len(fvarr)
                    fv_max = max(fvarr)
                    fv_med = median(fvarr)
                    partial_ave = vtbl[ie] * vtbl[ie] * fv_ave * dvtbl[ie] * sin(ib*pi/180.) * (pi/180) * (pi/180)
                    partial_max = vtbl[ie] * vtbl[ie] * fv_max * dvtbl[ie] * sin(ib*pi/180.) * (pi/180) * (pi/180)
                    partial_med = vtbl[ie] * vtbl[ie] * fv_med * dvtbl[ie] * sin(ib*pi/180.) * (pi/180) * (pi/180)
#                    logger.debug('%d %d %d %e %e %e %e' % (ia,ib,ie,fv,partial_ave,partial_max, partial_med))
                    print('%d %d %d %e %e %e %d' % (ie,ia,ib,fv_ave,fv_max,fv_med,len(fvarr)))
                    density_by_ave=density_by_ave+partial_ave
                    density_by_max=density_by_max+partial_max
                    density_by_med=density_by_med+partial_med

                    fv_avelist[ie, ia, ib] = fv_ave

    print('# Density (fv_ave) = %e'% density_by_ave)
    print('# Density (fv_max) = %e'% density_by_max)
    print('# Density (fv_med) = %e'% density_by_med)

    return (density_by_ave, fv_avelist)



if __name__=='__main__':
    ''' Main routine to investigate the argument.
    '''
    import getopt

    if len(sys.argv) != 3:
        print('***\nUSAGE:  %s   t0   t1\n***' % (sys.argv[0]))
        sys.exit(-1)

    t0 = dateutil.parser.parse(sys.argv[1])
    t1 = dateutil.parser.parse(sys.argv[2])

    logger.info('Start  %s' % t0)
    logger.info('Stop   %s' % t1)

#    t0 = datetime.datetime(2009,1,25,13,50,0)
#    t1 = datetime.datetime(2009,1,25,14,10,0)

#    t0 = datetime.datetime(2009,1,25,14,00,0)
#    t1 = datetime.datetime(2009,1,25,14,00,10)

#    t0 = datetime.datetime(2009,1,25,14,50,0)
#    t1 = datetime.datetime(2009,1,25,15,10,0)

    import irfpy.swim.swim_start
    obstime=irfpy.swim.swim_start.getobstime(timerange=[t0,t1])
#    for t in obstime:
#        swim_observation_table(t)

    swim_mominteg(t0, t1)