''' A simple code to plot Ganymede B-field at the specified height
'''
import pyana.pep.ganymede_magfield
import matplotlib.pyplot as plt
import numpy as np
def main():
# Instance the B-field model.
sf = pyana.pep.ganymede_magfield.SimpleDipole()
# The longitude and lattitude grid, every 5 degrees.
lon = np.linspace(0, 2 * np.pi, 72)
clat = np.linspace(0, np.pi, 36)
# Ganymede radius
r = 2631.
# Altitude of S/C
h = 200.
# S/C radius from the center
rh = r + h
# Grid on the spacecraft position
lons, lats = np.meshgrid(lon, clat)
# x, y and z in Cartesian.
x = rh * np.sin(lats) * np.cos(lons)
y = rh * np.sin(lats) * np.sin(lons)
z = rh * np.cos(lats)
### If you want to plot the grided coordinates.
#plt.figure()
#plt.pcolor(lons, lats, x)
#plt.figure()
#plt.pcolor(lons, lats, y)
#plt.figure()
#plt.pcolor(lons, lats, z)
#Shape of x is (len(clat), len(lon))
bx = np.zeros_like(x)
by = np.zeros_like(x)
bz = np.zeros_like(x)
# Iterate to calculate the b-field in specific position.
for ilat in range(len(clat)):
for ilon in range(len(lon)):
# Spacecraft position for each grid
posvec = np.array([x[ilat, ilon], y[ilat, ilon], z[ilat, ilon]])
# Here, getting the vector
bvector = sf.get_field(posvec)
# Save each component.
bx[ilat, ilon] = bvector[0]
by[ilat, ilon] = bvector[1]
bz[ilat, ilon] = bvector[2]
plt.figure()
plt.pcolor(lons * 180 / np.pi, 90 - lats * 180 / np.pi, bx)
plt.xlim(0, 360)
plt.ylim(-90, 90)
plt.title('Bx [nT]')
plt.colorbar()
plt.figure()
plt.pcolor(lons * 180 / np.pi, 90 - lats * 180 / np.pi, by)
plt.xlim(0, 360)
plt.ylim(-90, 90)
plt.title('By [nT]')
plt.colorbar()
plt.figure()
plt.pcolor(lons * 180 / np.pi, 90 - lats * 180 / np.pi, bz)
plt.xlim(0, 360)
plt.ylim(-90, 90)
plt.title('Bz [nT]')
plt.colorbar()
if __name__ == '__main__':
main()