apps120816_flyover.flyover_yaw

''' A main script to plot the FOV map, trajectory, and E-t (JDC) and C-t (JNA).

This is originally from a copy of :mod:`apps120816_flyover.flyover`.

Related scripts are:

- :mod:`apps120718_jna_fov.traj_on_surface`.
- :mod:`apps120803_jdcfly.app08_jdc_jna_flyover`.

.. image:: ../../../src/scripts/apps120816_flyover/flyover_yaw_70steer.png
    :width: 90%

'''
import datetime

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

#import pyana.pep.juice_spice1205 as jspice
import pyana.juice.jspice as js
js.init()
import pyana.pep.pep_attitude
import pyana.jna.frame0 as frame
import pyana.jna.fov0 as jnafov
import pyana.jna.frame0 as jnaframe


import pyana.util.intersection


def pla2geo(vecs_pla):
    vecs_geo = np.ma.zeros(vecs_pla.shape)
    vecs_geo[0] = vecs_pla[1]
    vecs_geo[1] = -vecs_pla[0]
    vecs_geo[2] = vecs_pla[2]
    return vecs_geo

def geo2pla(vecs_geo):
    vecs_pla = np.ma.zeros(vecs_geo.shape)
    vecs_pla[0] = -vecs_geo[1]
    vecs_pla[1] = vecs_geo[0]
    vecs_pla[2] = vecs_geo[2]
    return vecs_pla

def vec2lonlat(vecs_geo):
    lons = np.arctan2(vecs_geo[1], vecs_geo[0]) * 180. / np.pi
    # lons is -180 to 180. Lons should range -90 to 270.
    lons = np.array(lons)
    lons = np.where(lons < -90, lons + 360, lons)
    
    r = np.sqrt((vecs_geo ** 2).sum(0))
    lats = np.arcsin(vecs_geo[2] / r) * 180. / np.pi
    return lons, lats

def segmentize_lons(lons):
    ''' Return index boundary that separates the segment

    Segment is separated by a boundary that has difference of
    longitudal angle more than 180 degrees.

    For example,

    >>> lons = np.array([-175, -178, -179, 179, 177, 173, 178, 179, -178, -175])
    >>> print(lons.shape)
    (10,)

    will be separated into three segments, namely first three negatives,
    following five positives, and the last two negatives.

    Returned is boundary index.  In this example, [0, 3, 8, 10] will be returned.
    The number of the segment is the length of the returned minus 1.

    >>> idx = segmentize_lons(lons)
    >>> print(idx)
    [0, 3, 8, 10]

    You can use the returned as

    >>> nseg = len(idx) - 1
    >>> segmented_lons = []
    >>> for i in range(nseg):
    ...     segmented_lons.append(lons[idx[i]:idx[i+1]])
    >>> print(segmented_lons)
    [array([-175, -178, -179]), array([179, 177, 173, 178, 179]), array([-178, -175])]

    Obviously, the array as

    >>> lons = np.arange(1000)

    will return the boundary as [0, 1000], while it exceeds 360 degrees.

    >>> print(segmentize_lons(lons))
    [0, 1000]
    '''
    nlons = len(lons)
    diff = np.abs(lons[:-1] - lons[1:])
    segb = (np.where(diff > 180)[0] + 1).tolist()
    segb.insert(0, 0)
    segb.append(nlons)
    return segb

def main(type="nadir", get_yaw=None, output=None):
    '''Main script

    get_yaw should be a function that eats the latitude_degrees
    returning the steering angle for the specific time.
    '''
    t0 = datetime.datetime(2033, 4, 4, 18, 50)

    ### Plot on map
    fig = plt.figure(figsize=(24, 10))
    ax = fig.add_subplot(111)
    ### Note that the longitude here is 
    m = Basemap(projection='cyl', lon_0=90, resolution='c', ax=ax)

    m.drawparallels(np.arange(-90, 120, 30), labels=[True, False, False, False])
    m.drawmeridians(np.arange(-180, 210, 30), labels=[False, False, False, True])
    m.warpimage('../../pyana/pep/images/ganymede.jpg')

    ### Map

    import pyana.pep.mhddata
    fmap = pyana.pep.mhddata.PrecipitationFlux(type=type)
    lonlist = fmap.reshape(fmap.lonlist())   # In plasma frame
    lonlist = lonlist - 90   # In geo-frame
    latlist = fmap.reshape(fmap.latlist())
    flxlist = fmap.reshape(fmap.flist())
    lflxlist = np.ma.log10(flxlist)

    x, y = m(lonlist, latlist)

    # LOG scale
    pc = m.contourf(x, y, lflxlist, np.linspace(7.9, 8.5, 7))
    cb = fig.colorbar(pc)
    cb.set_label('Log of flux [/cm2 s]') 
    
    from matplotlib import cm
    pc2 = m.contour(x, y, lflxlist, np.linspace(7.5, 7.9, 5), cmap=cm.Blues)
    plt.clabel(pc2)

    # LINEAR scale

#    pc = m.contourf(x, y, flxlist, [1e8, 1.25e8, 1.5e8, 1.75e8, 2e8, 3e8])
#    fig.colorbar(pc)

    ### Open-close line
    import pyana.pep.mhddata
    lval = pyana.pep.mhddata.LValue1201()
    ocb = lval.opencloseboundaries()
    lon = np.arange(-90, 270.001, 2)
    x, y = m(lon, ocb[0])
    m.plot(x, y, 'y', lw=3)
    x, y = m(lon, ocb[1])
    m.plot(x, y, 'y', lw=3)

    ### Track.
    for tlen, style in zip((1080, 3600), ('w-', 'w--')):
        track_time = t0 + datetime.timedelta(seconds=10) * np.arange(tlen)  # 3 or 10 hours
        poslist = np.array([js.get_position(t, origin='GANYMEDE', frame='IAU_GANYMEDE') for t in track_time])
        poslist = poslist.T
        lon, lat = vec2lonlat(poslist)

        segidx = segmentize_lons(lon)
        seglon = [lon[segidx[i]:segidx[i+1]] for i in range(len(segidx) - 1)]
        seglat = [lat[segidx[i]:segidx[i+1]] for i in range(len(segidx) - 1)]

        for slon, slat in zip(seglon, seglat):
            print(slon, slat)
            x, y = m(slon, slat)
            m.plot(x, y, style)
    

    ### Track every 10 minutes
    tick_time = t0 + datetime.timedelta(minutes=10) * np.arange(60)
    poslist = np.array([js.get_position(t, origin='GANYMEDE', frame='IAU_GANYMEDE') for t in tick_time])
    poslist = poslist.T
    lon, lat = vec2lonlat(poslist)
    x, y = m(lon, lat)
    m.plot(x, y, 'wo')

    ### JNA FoV on map
    fovtlist = t0 + datetime.timedelta(minutes=2) * np.arange(40)# + datetime.timedelta(minutes=60)

    ### Need instance of sc
    sc = pyana.pep.pep_attitude.NadirLookingYawSteeringSc()

    rg = 2634.1
    for fovt in fovtlist:
        scpos_gany = js.get_position(fovt, origin='GANYMEDE', frame='IAU_GANYMEDE')
        scvel_gany = js.get_velocity(fovt, origin='GANYMEDE', frame='IAU_GANYMEDE')

        ### For steering angle GUESS,
        lon, lat = vec2lonlat(scpos_gany)
        print(lon, lat)

        yaw = get_yaw(lat)
        print('Lat', lat)
        print('Yaw', yaw)
        sc.set_posvel(scpos_gany, scvel_gany, yaw)

        for ch in range(0, 7):
            thetalist = np.array([-3., 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, -3, -3, -3, -3, -3, -3, -3, -3, -3], dtype=np.float)
            philist = -70 + 20 * ch + np.array([0., 0, 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 20, 20, 17.5, 15, 12.5, 10, 7.5, 5, 2.5, 0], dtype=np.float)

            jnacoords = np.array([frame.angles2jna(t, p) for t, p in zip(thetalist, philist)])
            pepcoords = frame.jna2nsc(jnacoords.T).T  # This is PEP (virtual NSC) frame.
            nsc2ysc = sc.get_matrix_nsc2ysc()   # Now, YSC frame, the actially NSC frame
            sccoords = nsc2ysc.dot(pepcoords.T).T
            nsc2ref = sc.get_matrix_nsc2ref()
            print('nsc2ref', nsc2ref)
            ganycoords = nsc2ref.dot(sccoords.T).T
            xsect = np.ma.ones(ganycoords.shape) * np.nan

            for idx, vec in enumerate(ganycoords):
                v2 = pyana.util.intersection.los_limb_sphere(scpos_gany, vec, [0, 0, 0], rg)
                if v2 != None:
                    xsect[idx, :] = np.array([v2.x, v2.y, v2.z])

            xsect = np.ma.masked_invalid(xsect)

            xsectn = xsect / rg

            lat = np.arcsin(xsectn[:, 2].compressed()) * 180. / np.pi
            lon = np.unwrap(np.arctan2(xsectn[:, 1].compressed(), xsectn[:, 0].compressed()))
            print(lon)
            lon = lon * 180. / np.pi

            x, y = m(lon, lat)
            m.plot(x, y, 'r')

    if output == None:
        fig.savefig('flyover_yaw_1.png')
    else:
        fig.savefig(output)

    ### Only for mapping now.
    return

    fig = plt.figure(figsize=(12, 8))
    ax1 = fig.add_subplot(211)
    ax2 = fig.add_subplot(212)


    jnatime = t0 + datetime.timedelta(minutes=2) * np.arange(90)
    jnacnt = np.zeros((len(jnatime), 7)) + np.nan

    import pyana.jdc.fluxsimulator
    jdcsim = pyana.jdc.fluxsimulator.SimpleSimulator()
    jdcsim.set_species(16.0, 1.0)
    pp = pyana.pep.mhddata.PlasmaParameter1205()
    jdcflx = np.zeros((len(jnatime), 128)) + np.nan

    for ilat, t in enumerate(jnatime):
        print(ilat, t)
        scpos_gany = js.get_position(t, origin='GANYMEDE', frame='IAU_GANYMEDE')
        scvel_gany = js.get_velocity(t, origin='GANYMEDE', frame='IAU_GANYMEDE')

        # Convert to plasma frame
        scpos_gany = geo2pla(scpos_gany) / rg
        scvel_gany = geo2pla(scvel_gany)
        sc.set_posvel(scpos_gany, scvel_gany)

        for ch in (1, 2, 3, 4, 5):  # Only center 5 channels.
            # Center direction
            az = jnafov.azim_pix_center(ch)
            el = jnafov.elev_pix_center(ch)
            vecjna = jnaframe.angles2jna(el, az)
            vecnsc = jnaframe.jna2nsc(vecjna)
            vecgan = sc.convert_to_ref(vecnsc)   # Looking vector in Ganymede coordinates.
            v2 = pyana.util.intersection.los_sphere(scpos_gany, vecgan, [0, 0, 0], 1)
            if v2 == None:
                continue
            longit = np.arctan2(v2[1], v2[0]) * 180. / np.pi
            if longit < 0: longit += 360
            latit = np.arcsin(v2[2]) * 180. / np.pi
            print('LONLAT', longit, latit)

            try:
                idxlon, idxlat = fmap.nearest_neighbor(longit, latit)
            except IndexError as e:
                from pudb import set_trace; set_trace()
                print('Strange, index error. Anyway, skip it.', longit, latit)
                continue

            jnacnt[ilat, ch] = flxlist[idxlon, idxlat] * 0.2 / (2 * np.pi) * 2e-6   # in /s. Indeed , count rate
            # 0.2 comes from 20% from CENA result.
            # Sensor g-factor is taken from proposal v0.3, 2e-6 cm2 sr/pixel.
#            print jnacnt[ilat, ch]

        ### JDC
        n, vx, vy, vz, temp, pth = pp.interpolate3d(scpos_gany[0], scpos_gany[1], scpos_gany[2])
        vth = pyana.pep.mhddata.t2vth(temp, mass=16.)   # in m/s
        n *= 1e6   # in /m3
        vx *= 1e3; vy *= 1e3; vz *= 1e3  # in m/s
        jdcsim.set_spacecraft_pvat(scpos_gany, scvel_gany)
        jdcsim.set_plasmaparameter(n, vx, vy, vz, vth)
        for ie in range(128):
            jdcflx[ilat, ie] = jdcsim.get_countrate(ie, 31, 0)
        print(jdcflx[ilat, :])

#    xax = [(j - jnatime[0]).seconds for j in jnatime]
    import matplotlib.dates as mpldates
    xax = [mpldates.date2num(j) for j in jnatime]
    yax = np.arange(8)
    x, y = np.meshgrid(xax, yax)
#    img = ax2.pcolor(x, y, np.ma.log10(jnacnt).T)
    img = ax2.pcolor(x, y, np.ma.masked_invalid(jnacnt).T, vmin=0, vmax=10)
    ax2.set_ylabel('JNA: Direction')
    cb = plt.colorbar(img, ax=ax2)
    cb.set_label('JNA count rate (log)')
    cb.set_label('JNA count rate')
    ax2.xaxis.set_major_formatter(mpldates.DateFormatter('%H:%M'))
#    locator = mpldates.AutoDateLocator()
#    ax2.xaxis.set_major_locator(locator)
    ax2.xaxis.set_ticks([mpldates.date2num(j) for j in tick_time])
    ax2.set_xlim(xax[0], xax[-1])

    import pyana.jdc.energy0 as energy

    yax = energy.getEnergy()
    x, y = np.meshgrid(xax, yax)
    img = ax1.pcolor(x, y, np.ma.log10(jdcflx).T, vmin=0.1, vmax=4)
    ax1.set_ylabel('JDC: Energy [eV]')
    ax1.set_yscale('log')
    ax1.set_ylim(yax.min(), yax.max())
    cb = plt.colorbar(img, ax=ax1)
    cb.set_label('JDC count rate (log)')
    ax1.xaxis.set_ticks([mpldates.date2num(j) for j in tick_time])
    ax1.xaxis.set_ticklabels('')
#    ax1.xaxis.set_major_locator(locator)
    ax1.set_xlim(xax[0], xax[-1])

    fig.autofmt_xdate()

    fig.savefig('flyover_yaw_2.png')


if __name__ == "__main__":
    main(get_yaw=lambda x: 0, output="flyover_noyaw.png")   # Constantly 70 deg.
    main(get_yaw=lambda x: 12, output="flyover_yaw_12const.png")   # Constantly 70 deg.
    main(get_yaw=lambda x: 12 / 90. * x, output="flyover_yaw_12steer.png")   # Constantly 70 deg.
    main(get_yaw=lambda x: 28, output="flyover_yaw_28const.png")   # Constantly 70 deg.
    main(get_yaw=lambda x: 28 / 90. * x, output="flyover_yaw_28steer.png")   # Constantly 70 deg.
    main(get_yaw=lambda x: 70, output="flyover_yaw_70const.png")   # Constantly 70 deg.
    main(get_yaw=lambda x: 70 / 90. * x, output="flyover_yaw_70steer.png")   # Constantly 70 deg.
#    main(type='footprint')